Note Added in Proof (Chapter 1)

A broad and genuinely live domain of nuclear heavy-ion science has been reviewed in the present chapter: since the submission of the manuscript for publication there have been reported plenty of new experimental and theoretical results substantially promoting the research field discussed. A few of these new findings were added to the text in the proofs; some others are highlighted below.

In early 1984, both at Dubna and Darmstadt, there were successfully completed experiments on the synthesis of element 108. The Dubna team, in studying products of the cold fusion reactions ${ }^{209}{ }^{20}\left({ }^{5} \mathrm{Mn}, n\right)$ and ${ }^{207,208} \mathrm{~Pb}\left({ }^{58} \mathrm{Fe}, 1-2 n\right)$, has found that the element 108 isotopes with $A=$ 263-264, including the even-even nucleus ${ }^{264} 108$, undergo mainly alpha decay (Og 84a, b); the partial spontaneous fission half life of ${ }^{264} 108$ has been estimated to be 0.1 ms or more (Og 84 b). Somewhat earlier, when studying products of the ${ }^{206,207,208} \mathrm{~Pb}\left({ }^{54} \mathrm{Cr}, 1-2 n\right)$ reactions, the dominance of alpha decay has been established at Dubna also for the element 106 isotopes of $A=259-261$, with the following estimates for the partial spontaneous fission half lives (De 84b): $T_{\text {sf }}\left({ }^{259} 106\right) \geq 0.1 \mathrm{~s}, T_{\text {sf }}\left({ }^{260} 106\right) ~ \gtrsim 5 \mathrm{~ms}$, and $T_{\text {sf }}\left({ }^{261} 106\right) \geq 0.4 \mathrm{~s}$. At Darmstadt, Münzenberg et al. (Mü 84b), having detected three appropriate alpha decay chains, identified the isotope ${ }^{265} 108$ as an alpha emitter with $T_{1 / 2}=\left(1.8_{-0.7}^{+2.2}\right) \mathrm{ms}$; this isotope has been produced in the ${ }^{208} \mathrm{~Pb}\left({ }^{58} \mathrm{Fe}, n\right)$ reaction with a cross section of $\left(19_{-11}^{+18}\right) \mathrm{pb}$ at a compound nucleus excitation energy of (18 ± 2) MeV . In a companion experiment, Münzenberg et al. have studied radioactive properties of the element of 106 isotopes with $A=259-261$ formed in the ${ }^{207,208} \mathrm{~Pb}\left({ }^{54} \mathrm{Cr}\right.$, $1-2 n$) reactions and, in particular, they have found that the alpha-decaying isotope ${ }^{260} 106$ with $T_{1 / 2}=\left(3.6_{-0.6}^{+1.1}\right) \mathrm{ms}$ possesses a partial spontaneous fission half life of about $7-10 \mathrm{~ms}$ (Ar 84). The Dubna and Darmstadt data on the radioactive properties as well as production cross sections of the new nuclides are in reasonably good agreement.

The recent findings on the remarkable stability of the new even-even nuclei ${ }^{260} 106$ and ${ }^{264} 108$ with $x=0.90-0.92$ as well as neighboring odd A nuclei essentially confirm the principal statements made in Section 2.1. All in all, the 25 transactinide species of $Z \geq 104$ produced until now create a precedent for the existence of a large group of nuclei stabilized solely by the "shell" fission barrier and thus they manifest a straightforward evidence in favor of the existence of the near-magic superheavy nuclei with $Z \geq 110$ and $N=184$ that long ago have been predicted to be particularly stable against spontaneous fission.

We ought to state also that in the ${ }^{208} \mathrm{~Pb}+{ }^{58} \mathrm{Fe}$ system with $\left(Z^{2} / A\right)_{\text {eff }}=$ 38.0 and $\left(Z^{2} / A\right)_{\mathrm{m}}=40.8$ the cold fusion still takes place so that the
evaporation residue production cross sections, while being very low, of the order of $5-10 \mathrm{pb}$, are still quite detectable. Moreover, it is most probable that in the system ${ }^{209} \mathrm{Bi}+{ }^{58} \mathrm{Fe}$ with $\left(Z^{2} / A\right)_{\text {eff }}=38.3$ and $\left(Z^{2} / A\right)_{\mathrm{m}}=41.3$ the complete fusion also occurs resulting in the alpha-decaying nuclide ${ }^{266} 109(x=0.93)$ with a production cross section of about $3 \mathrm{pb}(\mathrm{Og} 84 \mathrm{~b})$. The above conclusions seem to be potentially important to clarify the complete fusion issue for the heaviest reaction systems, which so far remains to be rather obscure even along qualitative lines. All the more, further experimental and theoretical work is of great urgency before any quantitative statements can be made regarding the change pattern of barriers and probabilities for the formation of a compound nucleus near the limits for fusion.

A progressive resurgence of interest to the angular distributions of fragments formed by heavy-ion induced fission stimulated production of new experimental data (Ga 84b,c, Tõ 84a, Va 84) as well as theoretical results (Bo 84d, Pl 84b, Pr 84, Ro 84, Tõ 84a) directed at clarifying the applicability limits of the standard statistical Halpern-Strutinsky theory of fission-fragment angular distributions or at expanding the theory towards high spins, high excitation energies, and large Z^{2} / A values. In particular, Gavron et al. ($\mathrm{Ga} 84 \mathrm{~b}, \mathrm{c}$) have collected an extended data set on the fragment angular distributions for the following reactions: ${ }^{12} \mathrm{C}$ (at $E_{\text {lab }}=$ $95-291 \mathrm{MeV}$) on ${ }^{174} \mathrm{Yb},{ }^{198} \mathrm{Pt}$, and ${ }^{238} \mathrm{U}$; ${ }^{16} \mathrm{O}$ (at $E_{\text {lab }}=140-315 \mathrm{MeV}$) on ${ }^{142} \mathrm{Nd},{ }^{170} \mathrm{Er},{ }^{192} \mathrm{Os}$, and ${ }^{238} \mathrm{U}$. The measured angular distributions have been compared to those calculated within the standard statistical transition-state model assuming K distribution to be determined at the saddle point and using moments of inertia from saddle-point shapes with diffuse surfaces, provided by a rotating finite-range model of Sierk. Gavron et al. have found that the calculations agree with experimental angular distributions in those cases where, for a significant fraction of the partial waves contributing to fission, the fission barrier height $\tilde{B}_{f}(\bar{l})$ is comparable to or greater than the nuclear temperature at the saddle point, $T(\bar{l})$. When $\tilde{B}_{f}(\tilde{l})<T(\tilde{l})$, the overall agreement with experiment is poor. In the cases where the model disagrees with experiment, the measured anisotropies, as a rule, substantially exceed the calculated ones. Therefore Gavron et al. (Ga 84b) assume that, when $\tilde{B}_{f}(\bar{l})<T(\tilde{l})$, either the shapes controlling angular anisotropy are more extended than the saddle-point shapes or the passing to the scission configuration is too rapid to enable the K quantum number to be completely equilibrated so that the effective K distribution will be narrower than the predicted one and the angular distribution will be more anisotropic; in such cases the K distribution seems to be governed by the reaction dynamics. Then the degree of the discrepancy between calculations and measurements could be considered (Ga 84 b) as a manifestation of the time scale involved: the lighter the projectile and the lower the bombarding
energy, the longer the time scale and, consequently, the smaller the discrepancy between the calculated and measured anisotropies.

In order to describe the fission-fragment angular distributions in the cases of $\tilde{B}_{f}(\bar{l})<T(\bar{l})$, when a transition state (or saddle point) in fission is absent, Rossner et al. (Ro 84) have applied a phenomenological statistical scission model of angular distributions, first suggested by Ericson (Er 60), in which the fate of the fission process is determined by the phase space available at the scission point. The essence of the model consists in assuming a statistical partition of the initial angular momentum 1 of the fissioning nucleus into orbital angular momentum \mathbf{I} and channel spin \mathbf{S} of the two primary fission fragments, where $\mathbf{I}=\mathbf{I}+\mathbf{S}$. It is these quantities which control the fragment angular distribution. Comparison of the Rossner et al. model calculations to experimental data has demonstrated (Ro 84) a good agreement for the systems ${ }^{40} \mathrm{Ar}\left(E_{\text {lab }}=340 \mathrm{MeV}\right)$ on ${ }^{238} \mathrm{U}$ (Le 83b) and ${ }^{32} \mathrm{~S}\left(E_{\text {lab }}=266 \mathrm{MeV}\right)$ on ${ }^{208} \mathrm{~Pb}(\mathrm{Ba} \mathrm{83a}, \mathrm{~b})$ as well as for many other systems in a wide range of fissility parameter, excitation energy, and spin value.

Thus, even though a great deal of details concerning fragment angular distributions is still to be clarified, nevertheless, one can state that the standard transition-state model of angular distributions works when it is expected to, viz., when $\tilde{B}_{f}(\bar{l})>T(\bar{l})$; just as the rotating liquid drop model -with due regard for its generalized versions (Mu 82d, Ga 84b) and within the limits of its applicability (Co 74, Pl 84b)-provides a fairly good representation of x and l dependences of the saddle-point shapes. Following Plasil (Pl 84b), we shall, however, stress that the saddle-point shapes predicted by the rotating liquid drop model for $l=l_{B_{f}}$ are never spherical (except for the extreme $x=1$, where $\tilde{B}_{f}=0$ at $l=0$) and thus $K_{0}^{2} \neq \infty$ at $l>l_{B_{f}}$; therefore, using $K_{0}^{2}=\infty$ for $l>l_{B_{f}}$ [explicitly or implicitly made in a number of works (Ba 83a,b, Bo 84d, Le 83b, Ro 83a, Ts 83a)] can lead to incorrect conclusions, and effects of the error are expected to be the greater the smaller value of x. On the other hand, for very heavy systems, i.e., for high x values, the saddle-point shapes from the rotating liquid drop model are compact and triaxial, and the axial approximation is known not to be adequate (Co 74). For triaxial nuclei, K_{0}^{2} and $J_{\text {eff }}$ are not defined and theoretical expressions for angular distributions should be modified to take this into account. Again, the rotating liquid drop model (Co 74) predicts that no saddle-point shapes exist for $l>l_{B l}$. Consequently, the standard theory of angular distributions suggesting the presence of a saddle point should not be used in conjunction with the rotating liquid drop model values of K_{0}^{2} and $J_{\text {eff }}$ extrapolated for $l>l_{B_{f}}$. On balance, concludes Plasil (Pl 84b), the data on the reactions involving angular moments beyond the $l=l_{B_{f}}$ limit (Ba 83a,b, Le 83b, Ro 83a, Ts 83a) should not be used as a basis to make any claim regarding the validity of the rotating liquid drop
model (Co 74) and statements concerning the value of K_{0}^{2} in such cases should be based on considerations other than those of the rotating liquid drop model.

As to the l-dependent fission barriers, we note here three new statisti-cal-model analyses of experimental data on high-spin fission of compound nuclei with $A \simeq 150-200$ (De 84a, Ka 84, Pl 84a). For the rare-earth domain, by studying the compound nuclei ${ }^{153} \mathrm{~Tb}$ and ${ }^{181} \mathrm{Re}$, Plasil et al. (Pl 84a) have found that, firstly, the rotating finite range model by Sierk (unpublished) or that by Mustafa et al. (Mu 82d), in which effects of the finite range of the nuclear force and of the diffuseness of the nuclear surface are included, adequately reproduce the experimental fission cross sections without any renormalization and, secondly, the new fission barriers calculated by Sierk and by Mustafa et al. are valid at least in the mass region from 150 to 210, [see also the papers ($\mathrm{Br} 83 \mathrm{~b}, \mathrm{Pl} 83$)]. Delagrange et al. (De 84a) as well as Karwowski and Vigdor (Ka 84) state, in turn, that a satisfactory description of experimental fissionability data for high-spin compound nuclei of $A \simeq 200$ is obtained with the fission barriers from the rotating liquid drop model by Cohen et al. (Co 74) and no lowering of the barriers is required here. In these two analyses the agreement between statistical-model calculations and experiment without the need to modify the barriers is achieved owing to employment of specifically improved level density treatments; however, the level density philosophy of Delagrange et al. (De 84a) differs remarkably from that of Karwowski and Vigdor (Ka 84).

Recently there has been obtained a considerable body of experimental evidence indicative of multifold particle emission from a compound or mononucleus prior to the onset of fission competition [see, e.g., the papers (Al 82, Br 82b, Ki 82, Mi 78, Ra 82a, Ri 82a,b, Va 84, We 84b) and references therein]. Such effects are largely observed for very fissile, highly excited and/or rapidly rotating nuclear systems with a vanishing fission barrier, $\tilde{B}_{f}(\bar{l}) \leq T(\bar{l})$, and the standard statistical transition-state model fails to describe them, just as it fails to represent fission-fragment angular distributions in these cases. Further development of alternative theoretical formulations of the fission process, in particular, exploration of the diffusion approach, is the subject of the recent papers (Ha 84b, Mo 82, Ni 84a, b, We 84a, b) containing, among other items, attempts to explain and evaluate the effects of the delayed onset of fission competition to particle evaporation. Let us incidentally note that in analyzing the data which signal an unexpectedly high yield of prefission neutrons, especially those for heaviest fissioning systems, one must account for neutron evaporation during the acceleration of fission fragments up to their asymptotic velocity (Ei 65): when studying fission of ${ }^{251}$ Es formed in the reaction ${ }^{232} \mathrm{Th}+{ }^{19} \mathrm{~F}\left(E_{\text {lab }}=124\right.$ MeV), Hinde et al. (Hi 84) have experimentally demonstrated that this
contribution can be very large-it comprises about three neutrons in this particular case.

New interesting experimental information has also been gained concerning the fast fission process and extra-push-type effects, which are expected to occur in the domain of high angular momenta, excitation energies, and Z^{2} / A values ($\mathrm{Ga} 84 \mathrm{c}, \mathrm{Gu} 84$, Le 84 , To $84 \mathrm{a}, \mathrm{b}, \mathrm{Zh} 84$). In particular, by measuring the energy dependence of symmetric fragmentation cross sections and of fragment mass and energy distributions for the systems ${ }^{40} \mathrm{Ar}\left(E_{\text {lab }}=210-300 \mathrm{MeV}\right)$ on ${ }^{197} \mathrm{Ar},{ }^{209} \mathrm{Bi}$, and ${ }^{238} \mathrm{U}(\mathrm{Zh} 84)$ as well as ${ }^{35} \mathrm{Cl}$ ($E_{\text {lab }}=240-350 \mathrm{MeV}$) on ${ }^{238} \mathrm{U}$ (Le 84), further experimental evidence has been obtained in favor of a fast fission process interpreted as "fission without barrier". An interesting feature of the new data consists in the following fact: while in the systems ${ }^{40} \mathrm{Ar}+{ }^{197} \mathrm{Au}$ and ${ }^{40} \mathrm{Ar}+{ }^{209} \mathrm{Bi}$ the mass distribution variance σ_{A}^{2} strongly increases with bombarding energy, in the ${ }^{40} \mathrm{Ar}+{ }^{238} \mathrm{U}$ and ${ }^{35} \mathrm{Cl}+{ }^{238} \mathrm{U}$ systems it remains essentially constant at a very large value, $\sigma_{A}^{2} \approx 1000(\mathrm{amu})^{2}$. Various qualitative explanations of this fact -all being consistent with the fast fission hypothesis-have been proposed by the authors of the experiments (Le 84, Zh 84).

In clarifying properties of fast fission and conditions for its setting in, of importance is experimental information on the angular-momentum dependence of the mass and kinetic energy distribution variances for fission fragments of a genuine compound nucleus. A valuable set of such data was obtained by Glagola et al. (Gl 84) for the fissioning systems produced in the fusion reactions ${ }^{16} \mathrm{O}\left(E_{\text {lab }}=90-148 \mathrm{MeV}\right)$ on ${ }^{170} \mathrm{Yb}$ and ${ }^{32} \mathrm{~S}\left(E_{\text {lab }}=180-230\right.$ MeV) on ${ }^{144,150,152,154} \mathrm{Sm}$. For the compound nucleus ${ }^{186} \mathrm{Pt}$, in the excitation energy range of $60-100 \mathrm{MeV}$, the measured σ_{A}^{2} values prove to be by some 20% larger when the compound nucleus is formed by the ${ }^{32} \mathrm{~S}$ ions which obviously generate higher average angular momenta \bar{l} than the ${ }^{16} \mathrm{O}$ ions do (for the given excitation energy range, l was estimated to be $32-54 \hbar$ in the ${ }^{32} \mathrm{~S}$ case and $30-45 \hbar$ in the ${ }^{16} \mathrm{O}$ case); the angular-momentum induced increment in the total kinetic energy variance is smaller and amounts to about 5-10\%.

Guarino et al. (Gu 84) have experimentally studied a mass drift between a heavy and a light nucleus in the reactions ${ }^{238} \mathrm{U}+{ }^{48} \mathrm{Ca},{ }^{238} \mathrm{U}+{ }^{50} \mathrm{Ti}$, and ${ }^{208} \mathrm{~Pb}+{ }^{56} \mathrm{Fe}$ at bombarding energies of the ${ }^{238} \mathrm{U}$ and ${ }^{208} \mathrm{~Pb}$ projectiles ranging between 4.6 and $6.1 \mathrm{MeV} /$ nucleon. The mass drift was observed as a function of total kinetic energy and scattering angle of primary reaction products. Particularly striking has been the observation of a very large mass transfer towards symmetry already at lowest bombarding energies in the vicinity of the reaction barrier; this mass drift towards symmetry could favor fast fission without compound nucleus formation.

An extended set of new experimental data on reactions between ${ }^{238} \mathrm{U}$ ions of 5.4 and $6.0 \mathrm{MeV} /$ nucleon and target nuclei ${ }^{16} \mathrm{O},{ }^{27} \mathrm{Al},{ }^{48} \mathrm{Ca},{ }^{45} \mathrm{Sc}$,
${ }^{48} \mathrm{Ti},{ }^{58} \mathrm{Fe},{ }^{64} \mathrm{Ni}$, and ${ }^{89} \mathrm{Y}$ has been reported recently by Tõke et al. (To 84b). Here accurate triple-differential cross sections, $d^{3} \sigma / d A \cdot d \Theta_{\mathrm{cm}} \cdot d T K E$, are obtained for the binary events within the full range of mass A and total kinetic energy $T K E$, and within almost full range of center-of-mass angle Θ_{cm}. Apart from the reaction on ${ }^{16} \mathrm{O}$, all the capture product distributions are found to be dominated by the fast fission process. With the ${ }^{27} \mathrm{Al}$ target the evolution of the reaction complex towards mass symmetry is almost complete whereas the heavier systems show very broad mass distributions with clear evidence of reseparation occurring before mass symmetry is reached. At the same time, the fast fission cross section diminishes as the target Z value increases, and for the ${ }^{89} Y$ target the deep inelastic scattering component completely dominates. The capture cross sections for the ${ }^{238} \mathrm{U}$ induced reactions are found to be well described by the extra-push model (Sw 81a,b, Sw 82, Bj 82c), however, a comparison of the present results to those obtained previously (Bo 82a) with a ${ }^{208} \mathrm{~Pb}$ beam and similar targets shows that the scaling in the entrance-channel fissility $x_{\text {eff }}$ is only an approximate law; the double magicity of ${ }^{208} \mathrm{~Pb}$ is pointed out (To 84b) as offering an interesting clue to understand the differences in the magnitudes of the extra push needed to achieve capture in the ${ }^{238} \mathrm{U}$ and ${ }^{208} \mathrm{~Pb}$-induced reactions. From the measured angular distributions the characteristic $1 / e$ relaxation time for the mass asymmetry motion is found to be equal to $(5.2 \pm 0.5) \times 10^{-21} \mathrm{~s}$. As a whole, the Tõke et al. (To 84 b) studies provide a deep insight into the fast fission process thought of as the mass drift mode in heavy-ion reactions. Furthermore, they rise the question (To 84b) as to why there are two separate channels in heavy-ion reactions-deep inelastic collisions and fast fission, and why are the two channels so pure? An unambiguous answer to this question would be of fundamental importance to understand the essence of highly inelastic nucleus-nucleus collisions.

The proofs for the present chapter were completed on October 15, 1984.

References to the Note Added in Proof

(Ar 84) P. Armbruster, lecture presented at The International School of Physics "Enrico Fermi" (Varenna, Italy, June 18-22, 1984); preprint GSI-84-47, Darmstadt (1984).
(Ga 84b) A. Gavron, P. Eskola, A. J. Sierk, J. Boissevain, H. C. Britt, K. Eskola, M. M. Fowler, H. Ohm, J. B. Wilhelmy, S. Wald, and R. L. Ferguson, Phys. Rev. Lett. 52:589 (1984).
(Ga 84c) A. Gavron, J. Boissevain, H. C. Britt, K. Eskola, P. Eskola, M. M. Fowler, H. Ohm, J. B. Wilhelmy, T. T. Awes, R. L. Ferguson, F. E. Obenshain, F. Plasil, and G. R. Young, Los Alamos National Laboratory preprint LA-UR-84-1983, Los Alamos (1984); Phys. Rev. C, to be published.
(G1 84) B. G. Glagola, B. B. Back, and R. R. Betts, Phys. Rev. C 29:486 (1984).
(Gu 84) G. Guarino, A. Gobbi, K. D. Hildenbrand, W. F. J. Müller, A. Olmi, H. Sann, S. Bjørnholm, and G. Rudolf, Nucl. Phys. A424:157 (1984).
(Le 84) S. Leray, X. S. Chen, G. Y. Fan, C. Grégoire, H. Ho, C. Mazur, C. Ngô, A. Pfoh, M. Ribrag, L. Schad, E. Tomasi, and J. P. Wurm, Nucl. Phys. A423:175 (1984).
(Lu 84) K. Lützenkirchen, J. V. Kratz, W. Brüchle, H. Gäggeler, K. Sümmerer, and G. Wirth, Z. Phys. A317:55 (1984).
(Mü 84b) G. Münzenberg, P. Armbruster, H. Folger, F. P. Hessberger, S. Hofmann, J. Keller, K. Poppensieker, W. Reisdorf, K.-H. Schmidt, H.-J. Schött, M. E. Leino, and R. Hingmann, Z. Phys. A317:235 (1984).
(Og 84a) Yu. Ts. Oganessian, A. G. Demin, M. Hussonnois, S. P. Tretyakova, Yu. P. Kharitonov, V. K. Utyonkov, I. V. Shirokovsky, O. Constantinescu, H. Bruchertseifer, and Yu. S. Korotkin, "On the Stability of the Nuclei of Element 108 with $A=263-265$," preprint E7-84-307, JINR, Dubna (1984); Z. Phys. A319, in print, 1984.
(Og 84b) Yu. Ts. Oganessian, M. Hussonnois, A. G. Demin, Yu. P. Kharitonov, H. Bruchertseifer, O. Constantinescu, Yu. S. Korotkin, S. P. Tretyakova, V. K. Utyonkov, I. V. Shirokovsky, and J. Estevez, "Experimental Studies of the Formation and Radioactive Decay of the $Z=104-109$ Isotopes," paper presented at the International Conference on Nuclear and Radiochemistry (Lindau, FRG, October 8-12, 1984); JINR communication E7-84-651, Dubna (1984).
(Pr 84) M. Prakash, V. S. Ramamurthy, S. S. Kapoor, and J. M. Alexander, Phys. Rev. Lett. 52:990 (1984).
(Ro 84) H. H. Rossner, J. R. Huizenga, and W. U. Schröder, Phys. Rev. Lett. 53:38 (1984).
(Tõ 84a) J. Tõke, R. Bock, G. X. Dai, A. Gobbi, S. Gralla, K. D. Hildenbrand, J. Kużminski, W. F. J. Müller, A. Olmi, W. Reisdorf, S. Bjørnholm, and B. B. Back, Phys. Lett. 142B:258 (1984).
(Tõ 84b) J. Tõke, R. Bock, G. X. Dai, S. Gralla, A. Gobbi, K. D. Hildenbrand, J. Kużminski, W. F. J. Müller, A. Olmi, H. Stelzer, B. B. Back, and S. Bjørnholm, "Quasi Fission-The Mass Drift Mode in Heavy-Ion Reactions," preprint GSI-84-51, Darmstadt (1984); to be submitted to Nucl. Phys. A.
(Va 84) L. C. Vaz, D. Logan, E. Duek, J. M. Alexander, M. F. Rivet, M. S. Zisman, M. Kaplan, and J. W. Ball, Z. Phys. A315:169 (1984).
(Zh 84) Z. Zheng, B. Borderie, D. Gardès, H. Gauvin, F. Hanappe, J. Péter, M. F. Rivet, B. Tamain, and A. Zaric, Nucl. Phys. A422:447 (1984).

Index

Abrasion-ablation model, 449, 652
Actinide elements, 255, 293
Actinide targets, 295
Action integral, 31
Adiabatic cranking model, 32
Adiabatic models, 639
AgCl monocrystals, 413
Allende meteorites, 367, 372
Alpha-alpha collisions, 538
Alpha-decay energies, 262
Alpha-decay systematics, 259, 284
Alpha-particle condensate, 611
Alpha-particle emission, 140
Americium, 258, 276
Americium anomaly, 15
Angular distribution, 469, 475, 485, 608, 616
Angular distribution of fission fragments, 102
Angular distribution of the deep inelastic reaction products, 194
Angular momentum, 5
critical, 104, 175
dependence of fusion barrier heights on, 135
Angular momentum dependence of fragment distributions, 176
Angular momentum dependence of saddlepoint shapes, 106
Anisotropy of delayed fission fragments, 271
Anomalons, 433
Anomalous xenon, 366
Associated multiplicity, 481
Asymmetric collisions, 591, 595
Asymmetric fission, 7, 291
Asymmetric fragment mass distributions, 19

Asymmetric two-center shell model, 63
$A^{\text {th }}$ power relationship, 476
Atmospheric fallout, 375
Average angular momentum, 126
Average angular momentum of compound nucleus, 109
Average multiplicity, 481, 626
Average number of prompt neutrons, 129, 374, 383
Average number of prompt neutrons per fission, 66
Axial asymmetry, 19, 22
Azimuthal correlation, 667

Balloon-borne experiments, 403
Barrier curvature, 267
Barrier height, 79
Barrier penetrability, 15
Baryon-antibaryon pairs, 544
Baryon-baryon interactions, 501
Baryonic resonances, 671
Bastnasite, 371
BCS approximation, 32
BCS theory, 263
Berkelium, 258, 278
Beta-decay energies, 262, 286
Beta-decay strength function, 350
Beta-delayed fission, 41, 42, 44, 47, 130
Beta-stability line, 40, 42, 165
Beta-strength function, 45, 46
Binary process, 186, 310
Binding energy per nucleon, 580
Binding-energy dependence, 661
Black hole, 351
Blast-wave model, 654
Bohr-Wheeler formula, 116

Bohr-Wheeler-Frenkel theory, 4
Boltzmann distribution, 658
Boltzmann equation approach, 572, 630, 669
Boltzmann factor, 102
Boost parameter, 406
Bose-Einstein correlations, 492
Bose-Einstein distributions, 611
Boson-boson correlations, 423, 490
Bounce-off, 592, 594, 595, 606, 610, 666
Bradt-Kaplan formula, 421
Break-up phase, 657
Bubble chamber, 414, 438
Bubbles, 585
${ }^{48} \mathrm{Ca}$ beams, 81,341
Californium, 258, 279, 363
Calorimetry, 409
Caltech model, 644
Cascade, 457
Cascade calculation, 465, 567, 572, 625
Cascade model, 468, 481, 621, 624, 666
Castagnoli formula, 420
Centauro events, 405, 543
Central collisions, 313, 487, 509, 575
Central reactions, 598
Centrifugal force, 174, 209
Centrifugal stretching, 272
Characteristic angular momentum, 86, 123
Characteristic time, 215
Characteristic x-rays, 368
Charge distributions of fragments, 145
Charge form factors, 453
Charged liquid drop, 11
Charged particle beams, 369
Charged particle emission, 306
Chart of isotopes, 40
Cheleken hot brines, 376
Chemical equilibrium, 656
Chemical equilibrium model, 569, 610, 656
Chemical identification, 258
Chemical properties of superheavy elements, 338
Chemical properties of transuranium elements, 293
Chemical separation, 294, 297, 343, 345
Cherenkov radiation, 353
Chromatographic techniques, 294, 298
Classical approximation, 571

Classical Boltzmann gas, 582
Classical dynamics model, 621, 624, 666
Classical equations of hydrodynamics, 577
Classical fission theory, 11
Classical potentials, 571
Classical statistics, 658
Classical thermodynamics, 106
Classical turning points, 31
Clean-knockout model, 457, 459
Closed neutron shells, 340
Coalescence coefficients, 478
Coefficient of thermoconductivity, 579
Coefficient of viscosity, 579
Coincidence experiments, 666
Cold compound nuclei, 318
Cold fragmentation, 58
Cold fusion, 6, 91, 318, 320, 321
Cold nuclei, 115, 316
fission of, 132
with high spin, 137
Cold rearrangement, 215
Cold superheavy nuclei, 340
Cold transfer, 309
Cold, rapidly rotating nuclei, 132
Collective waves, 598
Collective degrees of freedom, 131, 568
Collective flow, 156
Collective nuclear dynamics, 74
Collective phenomena, 4, 674
Collective variables, 187
Collision complex, 7
Collision ensemble, 622
Collision studies, 644,647
Collision time, 464
Compact scission configuration, 63
Complete fusion, 215, 216, 343
Complete fusion reaction, $75,77,82,184$, $308,317,340,342$
Composite-particle emission, 500
Composite particle formation, 471, 632
Compound nuclei, $77,116,185,214,341$
average angular momentum of, 109
cold, 318
decay, 4
dynamics of formation, 216
excitation energy of, 76, 79
fission, 180, 181, 213, 214
minimum excitation energy of, 80
probability of formation, 85
production mechanism of "cold", 81
spin distribution of, 104, 140
temperature of, 150

Compressed zone, 594
Compression of nuclear matter, 575, 673
Compression ratios, $588,614,615,628$, 635, 637, 647
Compressional energy, 580, 601
Computer codes, 577
Concentrations, 657
Condensation, 582
Conditional saddle point, 209, 344
Conservative forces, 188
Contamination control, 296
Conversion electrons, 143
Cooperative effects, 515
Coriolis forces, 113
Cosmic radiation, 402, 532
Cosmic-ray jet, 508, 538
Cosmochronology, 360
Cosmology, 334
Coulomb barrier, 83
Coulomb effects, 463, 467, 672
Coulomb energies, 133
Coulomb fission, 8, 142, 144
Coulomb force, 174, 209, 291, 308
Coulomb proximity effects, 171
Coupling to pion field, 618
Cranking model, 24
Critical angular momentum, 104, 175
Critical nuclear density, 494
Cross sections, for fission, 114
Crystal blocking, 142, 304
Curium, 258, 277

Damped relative motion, 195
de Broglie wavelength, 529, 568, 658
Decay-in-flight, 304
Decay properties of the transuranium nuclei, 275
Decompression shocks, 586
Deep inelastic collisions, $7,158,163,172$, 185, 342
Deep inelastic multinucleon transfer reactions, 7
Deep inelastic reaction products, angular distribution of, 194
Deep inelastic scattering, 298, 308
Deep inelastic transfer, 314, 321
Deexcitation of primary reaction products, 306
Deformation, 3

Deformation energy minima, 134
Deformation parameters, 8
Deformed shell effects, 291
Degree of freedom, 146, 567
Delayed fission, 333
Density contours, 592
Density history, 648
Density isomer, 584, 589, 602, 605
Density of nuclear states, 271
Dependence of the fission barrier height on angular momentum, 135
Determination of spectra, 652
Deuteron formation, 655
Deuterons, 669
Diabatic single-particle motion, 178
Diffusion coefficients, 312
Diffusion model of fission, 132
Diffusion process, 163
Diluteness assumption, 624
Dinuclear scission configuration, 156
Dinuclear system, 8
Dirac equation, 571
Direct fission reaction, 41
Dispersion of a quantal oscillator, 157
Dissipative collision, 178
Dissipative phenomena, 189
Doorway states, 142, 215
Double humped fission barrier, 23, 27, $111,134,263,307$
Double-humped mass yield curves, 182
Double mass separation, 368
Double-recoil method, 299
Drag force, 612
Droplet model, 123
Dubna code, 628
Dumbbell-like nuclear configuration, 96
Dynamic fission trajectory, 32
Dynamic liquid drop model, 69
Dynamic nonviscous liquid-drop model, 173
Dynamic shape distortions, 217
Dynamical r process, 350
Dynamics of compound nucleus formation, 216

Effect of dissipation on scission shapes, 198
Effective mass, 32, 188
Effective mass parameters, 32

Effective moments of inertia, 102, 105
Effective nucleon-nucleon forces, 20
Efremovka meteorites, 372
Einsteinium, 258, 280
Eka-bismuth, 339
Eka-mercury, 339
Eka-osmium, 339
Eka-platinum, 339
Electric quadrupole moment, 271
Electromagnetic dissociation, 447, 451
Electron capture, 41
Electron configurations, 338
Element 104, 333
Element 105, 259
Element 106, 261
Element 107, 261, 320
Element 108, 369
Elementary collisions, 496
Ellipsoid, 19
Elongation, 19
Empirical shell corrections, 335
Emulsion experiments, 421, 438, 664
Energy dependence of the fission cross sections, 115
Energy flow, 411
Energy flux cascade, 511
Energy independence, 446
Energy loss, 409
Entrance channel kinetic energy, 8
Entropy, 424, 580, 639, 669
Equation of state, 424, 580, 600, 616
Equations of motion, 570
Equations of relativistic fluid dynamics, 579
Equilibrated compound nucleus, 113
Equilibration properties, 576
Equilibrium density, 565
Equilibrium statistics, 131
Equilibrium thermal fluctuations, 148, 162
Equivalent momentum-dependent potential, 634
Ergodic hypothesis, 465
Etching threshold for latent defects, 354
Evaporation cascade, 141, 340
Evaporation residues, 114, 303
Excitation energy of fission fragments, 195
Excitation energy of compound nuclei, 76
Excitation functions, 76, 83
Excitation functions of (HI, xn) reactions, 115

Excitations with and without nucleon transfer, 203
Excited target nuclei, 444
Explosive processes, 501
Explosive stage of stellar evolution, 348
Extensive air shower, 545
Extra push, 85, 87, 210, 321, 344
Extra-extra push, 87, 209
Extra-extra push limitations, 88
Extraction chromatography, 294
F-variance ratio distribution, 436
Factorization, 424, 447
Fast fission, 7, 113, 153, 180, 205
Fast splitting, 170
Fermi-Dirac distributions, 611
Fermi distribution, 634
Fermi energy, 18
Fermi function, 45
Fermi gas, 116, 272, 457, 574, 581
Fermi momentum, 422, 428
Fermi motion, 644
Fermi surface, 18
Fermium, 258, 280
Final state rapidity, 593
Final-state chemistry, 609
Final-state coalescence model, 655
Final-state interactions, 479
Finite range model, 130
Fireball model, 456, 598, 651
Firestreak model, 457, 652
Fissility parameter, 12, 69, 86, 105, 118, 181, 269, 286
Fission, 3, 306
cross sections for, 114
delayed, 333
diffusion model of, 132
heavy-ion-induced, 114, 154
mean number of neutron emission per, 65
of cold nuclei, 132
probability of, 271
spin window for, 114
statistical model of, 173
thermal-neutron-induced, 60, 182
Fission barrier, 14, 20, 26, 36, 93, 263, 264, 335
Fission barrier heights, 48, 50, 115, 262
Fission barrier penetrabilities, 266

Fission cutoff of the r process, 349
Fission fragment angular distributions, 48, 112
Fission fragment energy yield distributions, 288
Fission fragments, 3
angular distribution of, 102
anisotropy of delayed, 271
excitation energy of, 195
Z-dependence of total kinetic energy of, 72
Fission fragment tracks in glasses, 364
Fission instability, 13
Fission isomers, 24, 263, 270
Fission of a rotating nucleus, 107
Fission of cold nuclei, 132
Fission of highly excited nuclei, 99
Fission probability, 132
Fission track, 373
Fission trajectory, 19
Fission valley, 23, 58, 73
Fluctuations, 675
Fluctuations of fragment properties, 64
Fluid dynamics, 570
Fly's eye device, 549
Fokker-Planck equation, 163, 178
Forward peaked distributions, 666
Fossil spontaneous fission tracks, 365
Fragments,
charge distribution of, 145
fluctuation of properties, 64
Fragment angular distributions, 129, 141, 446
Fragment distributions,
angular momentum dependence of, 176
Fragment kinetic energy fluctuations, 74
Fragment mass distribution, 56, 62, 167, 183, 291
Fragment multiplicities, 481
Fragment production cross sections, 433, 452
Fragment shell effects, 63
Fragment total kinetic energy, 59, 68
Free $n-n$ cross section, 620
Freeze-out density, 494
Freeze-out process, 350
Friction coefficient, 132
Frozen quantum fluctuations, 155
Fusion, 5, 184
viscosity effects in, 91
macroscopic theory of, 90
qualitative dynamic theory of, 85

Fusion cross sections, energy dependence of, 115
Fusion-fission cross sections, 82
Fusion-fission reaction, 96, 152, 172
Fusion-fission-like reactions, 167
Fusion valley, 58

Galactic cosmic rays, $39,347,352$
Gamma-ray emission, 306
Gamow function, 496
Gamow-Teller strength functions, 46
Garvey-Kelson mass relationship, 46
Gas of free nucleons, 471
Gas-jet recoil transport, 300
Geochemical processes, 378
Giant dipole resonance, 163
Giant halos, 369
Giant monopole resonances, 565, 569
Giant quadrupole resonance, 215
Giant resonances, 5, 192
Global equilibrium, 651
Gluon fields, 570
Grazing collisions, 422

Hahnium, 259, 283
Hard core, 644
Hartree-Fock-Bogolyubov approximation, 19
Head-on collisions, 635
Heated nuclei, 116, 131
Heaviest fissioning systems, 174
Heaviest possible target plus light ion, 79
Heavy nuclei, 335
stability of, 25
Heavy-ion beams, 5
Heavy-ion-induced fission, 114, 154
Heavy-ion physics, 9
Heavy-ion reactions, 6, 57
Helium jet, 298, 318
Hexadecapole deformation parameter, 52
$(\mathrm{HI}, \mathrm{xn})$ reactions, $75,77,83,84,91,94$, $140,211,340$
excitation functions of, 115
High angular momentum, 273
High-density neutron fluxes, 5
Higher densities, 570

Highly excited nuclei, fission of, 99
Highly inelastic nuclear collision, 9
High-spin fission, 130, 274
Hill-Wheeler formula, 47, 266
Hybrid models, 621, 624, 641
Hydrodynamical model, 403, 490, 567, 573, 577, 598, 635, 663
Hydrodynamic density, 592
Hydrodynamic description, 573
Hydrodynamics, 573, 651
classical equations of, 577
Hyperfragment decay, 438
Hypernuclei, 530

Impact parameter, 313, 640
Inclusive cross section, 611, 662
Inclusive data, 626
Inclusive energy spectra, 139, 428
Incomplete fusion, 75, 151, 314, 316
Incompressibility coefficient, 600
Independent particle model, 511
Independent-particle transport model, 164
Inertia tensor for the dinuclear regime, 188
Infinite nuclear matter, 583
Inner barrier height, 267
Intensity interferometry, 490
Interaction time, 464
Interference minimum, 144
Intermediate mononucleus, 180
Interpenetrating fluids, 647
Intranuclear cascade calculations, 445
Intrinsic quadrupole moments, 24, 25
Invariant cross section, 424, 485
Invariant differential cross sections, 478
Inviscid fluid flow equations, 606
Isentropic compression, 602
Island of stability, 342
Islet of symmetric fission, 57
Isobaric charge fluctuations, 154
Isotopic anomalies, 350, 359
Isovector giant dipole resonances, 156

Jackson model, 307
K distribution, 102, 113
Kinetic energy, 406, 446
Kinetic stress tensor, 619
Klein-Gordon equation, 619
Klein-Gordon field, 673
Knock-out process, 651
Kurchatovium, 257

Lambda-hyperons, 529
Landau's hydrodynamics, 511
Lanthanide elements, 293
Large amplitude motions of superfluid nuclear matter, 219
Large proportional counters, 364
Large-amplitude collective nuclear motion, 5, 184
Large-scale dynamics of uniformly heated nuclear matter, 219
Late-chance fission, 142
Lawrencium, 258, 282
l-dependent fission barrier, 125
Least-action principle, 31
Left-right asymmetry, 23
Level density, 18, 45, 100, 116, 117
Level density parameter, 118, 272
Lifetime parameter, 497
Lifetimes of even-even superheavy nuclei, 336
Light fission fragments, 154
Limiting angular momenta, 135, 272, 273
Limiting fragmentation, 425, 439, 449
Linear response theory, 180
Line of beta stability, 42
Liquid drop energy, 337
Liquid drop model, $11,12,13,16,23,26$, $32,99,106,115,119,130,262,286$, 335
Liquid drop model saddle point, 112
Liquid drop stability limit, 11
Local equilibrium, 573, 674
Local rest frame, 579
Local velocity distributions, 674
Longitudinal momentum distributions, 431
Lorentz factor, 420
Lorentz frame, 420
Low-energy fission, 182
l window, 315

Mach cone, 595
Mach shock waves, 598
Macroscopic fission barrier, 118, 119
Macroscopic theory of fusion, 90
Macroscopic-microscopic calculations, 37, 49, 133
Madagaskar monazite, 368
Magic numbers, 39
Magnetic spectrometer, 407, 411, 496
Marjalahti meteorite, 357
Mass asymmetric shape, 264
Mass distribution of fragments, 145, 185, 345
Mass distributions of fission fragments, 165
Masses, 262
Mass separator, 304, 368
Mass spectrometer, 366, 379, 385
Mass symmetric shape, 264
Mass yield curve, 63, 439
Mass-asymmetric configurations, 62
Mass-symmetric configurations, 62
Massive transfer, 151, 314, 316
Maximum angular momenta, 105, 175
Maximum binding energy per nucleon, 341
Maximum permissible concentrations, 297
Maxwell-Boltzmann distribution, 487, 600
Maxwellian temperatures, 487
Mean field, 133, 571
Mean fissility parameter, 209
Mean free path, $434,435,508,565,572$, 573, 647
Mean multiplicity, 510
Mean number of neutrons emitted per fission, 65
Mean recoil velocity, 441
Memory, 439
Mendeleev period law, 334
Mendeleev periodic table, 11, 40, 89, 338
Mendelevium, 257, 258, 281
Meteorites, 367, 372
Meteoritic inclusions, 359
Mica track detectors, 302
Midrapidity region, 456
Minimum excitation energy of the compound nucleus, 80
Minimum impact parameter, 453
Modeling techniques,
abrasion-ablation model, 449, 652
adiabatic cranking model, 32
adiabatic models, 639

Modeling techniques (cont.)
asymmetric two-center shell model, 63
blast-wave model, 654
Caltech model, 644
cascade model, 468, 481, 621, 624, 666
chemical equilibrium model, 569,610 , 656
classical dynamics model, $621,624,666$
clean-knockout model, 457, 459
cranking model, 24
diffusion model of fission, 132
droplet model, 123
dynamic liquid drop model, 69
dynamic nonviscous liquid-drop model, 173
final-state coalescence model, 655
finite range model, 130
fireball model, 456, 598, 651
firestreak model, 457, 652
hydrodynamical model, 403, 490, 567, 573, 577, 598, 635, 663
independent particle model, 511
independent-particle transport model, 164
Jackson model, 307
liquid drop model, $11,12,13,16,23$, $26,32,99,106,115,119,130,262$, 286, 335
more fluid models, 675
multifluid models, 611, 618
one-fluid model, 606
participant-spectator model, 594
rotating liquid drop model, 109,114 , $119,123,131,272,307$
rows-on-rows model, 630
semiphenomenological classical diffusion model, 312
shell model, 262
Simon model, 641
single-collision model, 464, 630
Smith-Danos model, 629
statistical models, 119, 173, 471
thermal equilibrium models, 464
thermal participant-spectator model, 473
thermodynamic fireball model, 494
thermodynamic model, 478
thermohydrodynamical models, 507
three-fluid model, 617
two-fluid model, 611, 613
two-step kinematic model, 444
Modified Skyrme interaction, 619

Moller-Nix mass formula, 283, 284
Moment of inertia, 24, 271, 306
Moments of inertia of rotating nuclei, 125
Momentum, 406
Momentum decay length, 576
Momentum dependence, 660
Momentum space contour, 636
Momentum-dependent Pauli potential, 634
Mononucleus, 8, 87
Monte Carlo calculation, 419, 481, 576, 644
More-fluid models, 675
Most probable fission-fragment kinetic energies, 199
Mother-daughter detector, 299, 300
Multibaryon state, 438, 501
Multichance fission reactions, 141
Multidimensional hydrodynamic simulation, 584
Multifluid models, 611, 618
Multinucleon exchange reactions, 184
Multinucleon transfer reactions, 75, 315
Multiparticle coincidence measurements, 465
Multiparticle final state, 479
Multiple neutron capture reactions, 339
Multiple neutron emission, 361
Multiple nucleon-nucleon scattering, 464
Multiple scattering, 663
Multiplicity, 421
Multiplicity distribution, 446, 503, 520, 538
Multiplicity of prompt neutrons, 65
Multipole moments, 19
n process, 350
Nascent fragments, 62
Natural radioactivity, 4
Neck formation, 19, 22, 73, 217
Neck rupture, 148, 158, 183
Negative kaons, 528
Negative pressure, 583
Neptunium, 258, 275, 293
Neutron capture reactions, 377
Neutron cascade, 93
Neutron deficit, 340
Neutron drip line, 350
Neutron emission, 93, 94, 116, 306
Neutron evaporation, 141
Neutron excess, 146

Neutron excess degree of freedom, 158
Neutron excess equilibration, 163
Neutron multiplicity detectors, 360,362 , 381
Neutron star, 351
Neutron-deficient nuclides, 49, 97
Neutron-induced fission, 4
Neutron-to-fission width ratio, 77
Neutron-to-proton ratio, 159
Neutrons emitted at scission, 130
Newton-Lagrange-Hamilton equations, 187
Nielsbohrium, 259
Nobelium, 258, 282
Noncompound processes, 113
Nonequilibrium effects in sequential fission, 171
Noninteracting particles, 658
Nonrelativistic kinematics, 568, 642, 658
Normal matter, 605
Nova cascade, 511
Nuclear absorption, 453
Nuclear charge fluctuations, 161
Nuclear clusters, 568
Nuclear cosmochronology, 42
Nuclear density, critical, 494
Nuclear dissipative forces, 308
Nuclear emulsion, 413
Nuclear explosions, 339
Nuclear fission, 6, 9, 257
Nuclear forces, 404
Nuclear friction, 341, 427
Nuclear isobars, 629
Nuclear level density, 272
Nuclear mass formula, 148
Nuclear mass surface, 165
Nuclear matter, 404, 439, 457, 565, 569, 654
compression of, 575, 673
large amplitude motions of superfluid, 219
large-scale dynamics of uniformly heated, 219
viscosity of, 341
Nuclear medium, 621
Nuclear molecules, 186
Nuclear properties of the transuranium elements, 262
Nuclear reactors, 4
Nuclear shape isomerism, 6

Nuclear stability, 11
Nuclear states,
density of, 271
Nuclear structure effects, 6, 18, 501
Nuclear temperature, 102, 122, 137, 139, 174, 306
Nuclear tracks in minerals, 353
Nuclear transparency, 521
Nuclear viscosity, 84
Nuclear-form factors, 449
Nucleon decay, 394
Nucleon half-life, 384
Nucleon isobars, 570, 590
Nucleon mean-free path, 133
Nucleon resonances, 671
Nucleon transfer, 218
Nucleon-nucleon forces, 19
Nucleon-nucleus cascade codes, 621
Nucleosynthesis of superheavy elements, 349
Nucleosynthesis theory, 38, 333
Nucleus-nucleus collisions, 4, 6, 158, 403, 405

Occupation probabilities, 203
Octupole deformation, 62
Olivine crystals, 356,373
One-body dissipation, 191, 201
One-body nuclear dissipation, 85
One-body superviscidity, 91
One-dimensional shock solutions, 585
One-fluid model, 606
One-particle distribution function, 572
Optical isomer shift, 25, 320
Optical potentials, 575
Optical pumping, 25
Out-of-plane correlation, 666
Outer barrier height, 267
Overlap parameter, 449

Pairing correction, 18, 263
Pairing correlations, 100
Pairing effects, 19, 136
Pairing interaction, 32
Participant, 422, 456, 640
Participant-spectator model, 594

Particle emission, 451
Particle identifiers, 407
Pauli core, 634
Pauli exclusion principle, 190, 574
Penetrability, 31
Peripheral collisions, 140, 313, 422
Peyrou plot, 529
Phase space, 116, 506
Phase transition, 575, 584, 589, 591
Photoelectron detection, 320
Photoemulsion stacks, 352
Photonuclear cross section, 453
Physical chemical techniques, 320
Pion interferometry, 490
Pion multiplicities, 516, 539
Pion production, 672
Pion source function, 491
Plastic ball, 409
Plastic detectors, 414
Plastic film track detectors, 352
Plastic wall, 409
Plutonium, 258, 276, 293
Pocket in the entrance-channel nucleus-nucleus potential, 206
Poisson law, 506
Position-sensitive detector, 303
Positive kaon, 525
Postfission neutrons, 142
Potential energy per nucleon, 638
Potential energy surface, $21,28,32,62$, 133, 165, 176
Power law, 659
Power-law distribution, 468
Pre-neutron-emission mass yield curve, 55
Precoalescence, 468
Precritical scattering, 575
Prefission neutron, 142
Prefragment, 440
Pressure gradient, 618
Primary reaction products, deexcitation of, 306
Primitive solar nebula, 367
Primordial superheavy element, 38
Probability of compound nucleus formation, 85
Probability of fission, 271
Producing superheavy elements by nucleosynthesis, 348
Production mechanism of "cold" compound nuclei, 81

Production of superheavy elements, 339
Projectile energy dependence, 661
Projectile fragmentation, 421, 422, 425, 433, 455
Projectile frame, 425
Projectile multiplicities, 416
Projectile-target explosion, 470
Projectile-like fragments, 170
Prolate ellipsoids, 271
Prompt neutrons, 3
average number of, 129, 374, 383
per fission, 66
multiplicity of, 65
total number of, 68
Protactinium finger, 310
Proton-nucleus collisions, 405, 507
Proton-proton collisions, 501
Pseudo observables, 417
Pseudoaccelerator, 532
Pseudorapidity, 406, 418, 473, 536
Q value, 79
Q_{gg} systematics, 315
Qualitative dynamic theory of fusion, 85
Quantal oscillator,
dispersion, 157
Quantum chromodynamics, 570
Quantum interference effects, 499
Quantum-mechanical zero-point motion, 158
Quark bags, 570
Quark bundles, 439
Quark matter, 439, 671
Quasifragments, 459
Quasifusion, 218
r process, 348, 352, 359
fission cutoff of, 349
r-process termination, 349
Ra-Th anomaly, 30
Radial diffuseness, 337
Radiation stability, 296
Radiative drag, 612
Radioactive decay, 11
Radiochemical experiments, 443
Radiochemical methods, 425
Rankine-Hugoniot relation, 586

Rapidity, 406, 418, 520, 521
Rapidity regions, 429
Rare earth series, 293
Rare spontaneous fission events, 360
Reaction parameters, 305
Reactions, 184
Reduced fissility parameter, 111
Reflection asymmetry, 19, 22
Relativistic fluid dynamics, equations of, 579
Relativistic Hartree-Fock method, 338
Relativistic heavy-ion interactions, 403
Relativistic hydrodynamics, 457, 502
Relativistic nuclear collisions, 481
Relativistic physics, 568
Relaxation phenomena, 8, 159
Relaxation time, 188, 194, 464, 573
Resonances, 649
Retardation, 583
Rigidity, 406, 426
Rotating charged liquid drop, stability of, 109
Rotating liquid drop model, $109,114,119$, 123, 131, 272, 307
Rotating nuclear systems, 101
Rotating nuclei, fission of, 107
moments of inertia of, 125
Rotational modes of excitation, 5
Rotational parameter, 108
Rows-on-rows model, 630
Rutherfordium, 259, 282

Saddle point, $8,19,101,115,131,208,306$, 321
conditional, 209, 344
Saddle-point shapes, angular momentum dependence of, 106
Saddle-to-scission descent, 63
Saddle-to-scission descent time, 148
Salt mine, 361
Saratov meteorites, 372
Scalar pressure, 578
Scission, 8, 22, 291
Scission-point configuration, shape fluctuations of, 73
Scission shapes, effect of dissipation on, 198

Second minimum, 268
Second Mueller parameter, 503
Secondary heavy-ion beams, 322, 455
Secondary minimum, 263
Secondary nuclear reactions, 339
Self-consistent Hartree-Fock calculations, 337
Semiempirical drift, 312
Semiphenomenological classical diffusion model, 312
Sequential fission, 7
nonequilibrium effects in, 171
Shape fluctuations of the scission-point configuration, 73
Shape isomerism, 16, 23
Shape-dependent inertia tensor, 188
Shear viscosity, 578
Shell correction energy, 18, 28, 262, 273, 337
Shell model, 262
Shell structure effects, 96, 100, 203
Shock compression, 602
Shock front, 607, 635
Shock heating, 588, 606
Shock relations for supersonic fluid flow, 586
Shock waves, 501, 573, 577
Side feeding, 151
Side splash, 591
Sidewards peaking, 666
Simon model, 641
Single scattering, 663
Single-atom detection, 320
Single-collision model, 464, 630
Single-particle effects, 286
Single-particle inclusive spectra, 457
Single-particle level density, 262
Single-particle potential, 18
Smith-Danos model, 629
Solar system orbit, 358
Sound waves, 582
Space-time dimensions, 490
Spatial resolution, 417, 438
Specific heats, 587
Spectators, 422, 456
Spectra,
determination of, 652
Speed of sound, 569, 582, 619
Spin cutoff parameter, 272
Spin distribution of the compound nucleus, 104, 140

Spin window for fission, 114
Spin-orbit strength, 337
Spins of the fissioning states, 144
Spontaneous fission, 3, 11, 35, 259, 263, $286,333,343,360,363,375,383$
Spontaneous fission decay curves, 260
Spontaneous fission halflife, 11, 12, 31, 269, 334
Spontaneously fissionable isomers, 6, 15, 41, 268, 333
Stability island, 336, 341, 346
Stability of a rotating charged liquid drop, 109
Stability of heavy nuclei, 25
Stability of super-heavy nuclei, 335, 343
Stationary points, 19
Statistical averaging, 622
Statistical methods, 567
Statistical model, 119, 471
Statistical model of fission, 173
Stellar evolution, explosive stage of, 348
Stopping signature, 409
Strange particles, 524
Streak geometry, 653
Streamer chambers, 413, 414
Structureless nuclear state, 100
Strutinsky existence method, 262, 335
Strutinsky shell correction method, 17, 137
Subbarrier fusion, 15, 217
Superfluid nuclear matter, large amplitude motions of, 219
Superheavy elements, 6, 37, 39, 54, 91, 135, 321, 333
chemical properties of, 338
in nature, 334,346
nucleosynthesis of, 348, 349
production of, 339
Superheavy elements in nature, 334,346
Superheavy evaporation residues, 92
Superheavy nuclei,
cold, 340
lifetimes of even-even, 336
stability of, 335, 343
Supernova explosion, 42, 348
Supersonic fluid flow, shock relations for, 586
Surface energies, 133
Surface tension coefficient, 106
Symmetric collisions, 591

Symmetric fission, 293
islet of, 57
Symmetric fragment mass distributions, 54
Symmetric fragmentation, 82, 87, 152, 177
Symmetric projectile-target systems, 85
Synchrotron radiation, 368, 377
Synthesis of transuranium elements, 305
Synthesis reactions, 39

Taagepera-Nurmia equation, 284
Tape system, 302
Target factors, 447
Target fragmentation, 416, 422, 430, 439
Target-like fragment, 310
Temperature, 421, 424, 458, 522, 603, 605, $614,628,653$
Temperature of the compound nucleus, 150
Temperature parameter, 469
Ternary fission, 168
Ternary heavy-ion reactions, 170, 172
Thermal energy, 581, 588, 601
Thermal energy per nucleon, 601
Thermal equilibrium, 428, 569
Thermal equilibrium fluctuations, 151 , 154, 158
Thermal equilibrium models, 464
Thermal expansion, 126
Thermal participant-spectator model, 473
Thermal smearing, 607
Thermal waters, 374
Thermal-neutron-induced fission, 60, 182
Thermochromatography, 373
Thermoconductivity, 573, 606, 608, 669
Thermoconductivity coefficient, 579
Thermodynamic fireball model, 494
Thermodynamic model, 478
Thermohydrodynamical models, 507
Thermonuclear explosions, 4
Thick target, 312
Thomas-Fermi method, 20
Three-body events, 171
Three-body exit channels, 169
Three-dimensional calculations, 581
Three-fluid model, 617
Three-fluid-like behavior, 647
Threshold effects, 603
Time evolution, 620

Time evolution of shape, 187
Time-dependent dynamic potential, 178
Time-dependent Hartree-Fock
approximation, 163, 187, 618
Time-of-flight, 303, 304, 407
Total energy, 406
Total kinetic energy loss, 159, 291
Total number of prompt neutrons, 68
Track images, 413
Transactinide nuclei, 13
Transfer reactions, 314
Transfermium nuclei, 11, 92
Transition state, 115, 131
Transmission coefficient, 266
Transport theory, 74, 163, 178
Transuranium elements, 4, 255, 262
chemical properties of, 293
nuclear properties of, 262
synthesis of, 305
Transuranium nuclei,
decay properties of, 275
Transuranium targets, 294
Treelike cascade, 507
Triaxial ellipsoid, 108
Triaxial shape, 19
Triple-humped fission barrier, 264
Tube of nuclear matter, 518
Two-body viscosity, 201
Two-center Nilsson single-particle potential, 26
Two-fluid model, 611, 613
Two-nucleon potentials, 633
Two-proton correlations, 497
Two-step kinematic model, 444
Two-step process, 440

Uehling-Uhlenbeck equation, 576
Ultrahigh-energy cosmic rays, 545
Ultrarelativistic energies, 404
Uranium, 293

Valence neutrons, 218
Variance of the total kinetic energy, 73
Vegas code, 624
Veil of tears, 305
Velocity distribution, 592

Velocity filter, 303
Velocity selector, 345
Vibrational modes of excitation, 5
Viscosity, 177, 573, 606, 669
Viscosity coefficient, 190, 579
Viscosity effects in fusion, 91
Viscosity of nuclear matter, 341
Viscous fluid, 587
Viscous hydrodynamical flow, 157
Viscous stress tensor, 578
Visual techniques, 413
all-and-window formula 191
Wave packets, 620
Weizsacker-Williams method, 449, 453
Werner-Wheeler approximation, 188

Window formula, 191
WKB approximation, 313

X-ray detection, 320
X-ray method, 300

Yrast isomers, 136
Yrast line, 316
Z dependence of the total kinetic energy, 72

