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Note Added in Proof (Chapter 1) 

A broad and genuinely live domain of nuclear heavy-ion science has 
been reviewed in the present chapter: since the submission of the manuscript 
for publication there have been reported plenty of new experimental and 
theoretical results substantially promoting the research field discussed. A 
few of these new findings were added to the text in the proofs; some others 
are highlighted below. 

In early 1984, both at Dubna and Darmstadt, there were successfully 
completed experiments on the synthesis of element 108. The Dubna team, in 
studying products of the cold fusion reactions 209Bie5Mn, n) and 
207,20sPbesFe, 1-2n), has found that the element 108 isotopes with A = 

263-264, including the even-even nucleus 264108, undergo mainly alpha 
decay (Og 84a, b); the partial spontaneous fission half life of 264108 has been 
estimated to be 0.1 ms or more (Og 84b). Somewhat earlier, when studying 
products of the 206,207,208Pbe4Cr, 1-2n) reactions, the dominance of alpha 
decay has been established at Dubna also for the element 106 isotopes of 
A = 259-261, with the following estimates for the partial spontaneous 
fission half lives (De 84b): T.fe59106);;:; 0.1 s, T.fe60106);;:; 5 ms, and 
Tsfe6I106);;:; 0.4 s. At Darmstadt, Miinzenberg et al. (Mii 84b), having 
detected three appropriate alpha decay chains, identified the isotope 265108 
as an alpha emitter with TI/2 = (1.8:::6:~) ms; this isotope has been produced 
in the 208PbesFe, n) reaction with a cross section of (19:::~D pb at a 
compound nucleus excitation energy of (18 ± 2) MeV. In a companion 
experiment, Miinzenberg et al. have studied radioactive properties of the 
element of 106 isotopes with A = 259-261 formed in the 207, 208 Pbe4 Cr, 
1-2n) reactions and, in particular, they have found that the alpha-decaying 
isotope 260106 with TI/2 = (3.6:::6:~) ms possesses a partial spontaneous 
fission half life of about 7-10 ms (Ar 84). The Dubna and Darmstadt data 
on the radioactive properties as well as production cross sections of the new 
nuclides are in reasonably good agreement. 

The recent findings on the remarkable stability of the new even-even 
nuclei 260106 and 264108 with x = 0.90-0.92 as well as neighboring odd A 
nuclei essentially confirm the principal statements made in Section 2.1. All 
in all, the 25 transactinide species of Z;;:; 104 produced until now create a 
precedent for the existence of a large group of nuclei stabilized solely by the 
"shell" fission barrier and thus they manifest a straightforward evidence in 
favor of the existence of the near-magic superheavy nuclei with Z ;;:; 110 and 
N = 184 that long ago have been predicted to be particularly stable against 
spontaneous fission. 

We ought to state also that in the 208Pb+ 58Fe system with (Z2jA)eff = 

38.0 and (Z2jA)m = 40.8 the cold fusion still takes place so that the 
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evaporation residue production cross sections, while being very low, of the 
order of 5-10 pb, are still quite detectable. Moreover, it is most probable 
that in the system 209Bi+ 58Fe with (Z2jA)eff=38.3 and (Z2jA)m=41.3 
the complete fusion also occurs resulting in the alpha-decaying nuclide 
266109(x = 0.93) with a production cross section of about 3 pb (Og 84b). 
The above conclusions seem to be potentially important to clarify the 
complete fusion issue for the heaviest reaction systems, which so far remains 
to be rather obscure even along qualitative lines. All the more, further 
experimental and theoretical work is of great urgency before any quantita
tive statements can be made regarding the change pattern of barriers and 
probabilities for the formation of a compound nucleus near the limits for 
fusion. 

A progressive resurgence of interest to the angular distributions of 
fragments formed by heavy-ion induced fission stimulated production of 
new experimental data (Ga 84b,c, To 84a, Va 84) as well as theoretical 
results (Bo 84d, PI 84b, Pr 84, Ro 84, To 84a) directed at clarifying the 
applicability limits of the standard statistical Halpern-Strutinsky theory of 
fission-fragment angular distributions or at expanding the theory towards 
high spins, high excitation energies, and large Z2j A values. In particular, 
Gavron et al. (Ga 84b,c) have collected an extended data set on the 
fragment angular distributions for the following reactions: 12C (at E 1ab = 
95-291 MeV) on 174Yb, 198Pt, and 238U; 160 (at E1ab = 140-315 MeV) on 
142Nd, 170Er, 1920S, and 238U. The measured angular distributions have 
been compared to those calculated within the standard statistical 
transition-state model assuming K distribution to be determined at the 
saddle point and using moments of inertia from saddle-point shapes with 
diffuse surfaces, provided by a rotating finite-range model of Sierk. Gavron 
et al. have found that the calculations agree with experimental angular 
distributions in those cases where, for a significant fraction of the partial 
waves contributing to fission, the fission barrier height B/l) is cOI?parable 
to or greater than the nuclear temperature at the saddle point, T( I). When 
B/l) < T(l), the overall agreement with experiment is poor. In the cases 
where the model disagrees with experiment, the measured anisotropies, as a 
rule, substantially exceed the calculated ones. Therefore Gavron et al. (Ga 
84b) assume that, when B/l) < T(l), either the shapes controlling angular 
anisotropy are more extended than the saddle-point shapes or the passing to 
the scission configuration is too rapid to enable the K quantum number to 
be completely equilibrated so that the effective K distribution will be 
narrower than the predicted one and the angular distribution will be more 
anisotropic; in such cases the K distribution seems to be governed by the 
reaction dynamics. Then the degree of the discrepancy between calculations 
and measurements could be considered (Ga 84b) as a manifestation of the 
time scale involved: the lighter the projectile and the lower the bombarding 
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energy, the longer the time scale and, consequently, the smaller the dis
crepancy between the calculated and measured anisotropies. 

In order to describe the fission-fragment angular distributions in the 
cases of BI{i) < TO), when a transition state (or saddle point) in fission is 
absent, Rossner et al. (Ro 84) have applied a phenomenological statistical 
scission model of angular distributions, first suggested by Ericson (Er 60), in 
which the fate of the fission process is determined by the phase space 
available at the scission point. The essence of the model consists in 
assuming a statistical partition of the initial angular momentum I of the 
fissioning nucleus into orbital angular momentum I and channel spin S of 
the two primary fission fragments, where I = 1+ S. It is these quantities 
which control the fragment angular distribution. Comparison of the Rossner 
et al. model calculations to experimental data has demonstrated (Ro 84) a 
good agreement for the systems 40Ar (Elab = 340 MeV) on 238U (Le 83b) 
and 32S (Elab = 266 MeV) on 208Pb (Ba 83a,b) as well as for many other 
systems in a wide range of fissility parameter, excitation energy, and spin 
value. 

Thus, even though a great deal of details concerning fragment angular 
distributions is still to be clarified, nevertheless, one can state that the 
standard transition-state model of angular distributions works when it is 
expected to, viz., when B/l) > T(l); just as the rotating liquid drop model 
-with due regard for its generalized versions (Mu 82d, Ga 84b) and within 
the limits of its applicability (Co 74, PI 84b)-provides a fairly good 
representation of x and I dependences of the saddle-point shapes. Follow
ing Plasil (PI 84b), we shall, however, stress that the saddle-point shapes 
predicted by the rotating liquid drop model for I = I B are never spherical 

- / 2 (except for the extreme x =1, where Bf = 0 at 1=0) and thus Ko * 00 at 
I> IB ; therefore, using K~ = 00 for I> IB [explicitly or implicitly made in a 

/ / 
number of works (Ba 83a, b, Bo 84d, Le 83b, Ro 83a, Ts 83a)] can lead to 
incorrect conclusions, and effects of the error are expected to be the greater 
the smaller value of x. On the other hand, for very heavy systems, i.e., for 
high x values, the saddle-point shapes from the rotating liquid drop model 
are compact and triaxial, and the axial approximation is known not to be 
adequate (Co 74). For triaxial nuclei, K~ and Jeff are not defined and 
theoretical expressions for angular distributions should be modified to take 
this into account. Again, the rotating liquid drop model (Co 74) predicts 
that no saddle-point shapes exist for I > I Bj" Consequently, the standard 
theory of angular distributions suggesting the presence of a saddle point 
should not be used in conjunction with the rotating liquid drop model 
values of K ~ and Jeff extrapolated for I > lB. On balance, concludes Plasil 
(PI 84b), the data on the reactions involving angular moments beyond the 
I = I B limit (Ba 83a, b, Le 83b, Ro 83a, Ts 83a) should not be used as a 

/ 
basis to make any claim regarding the validity of the rotating liquid drop 
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model (Co 74) and statements concerning the value of K~ in such cases 
should be based on considerations other than those of the rotating liquid 
drop model. 

As to the I-dependent fission barriers, we note here three new statisti
cal-model analyses of experimental data on high-spin fission of compound 
nuclei with A::: 150-200 (De 84a, Ka 84, PI 84a). For the rare-earth 
domain, by studying the compound nuclei 153Tb and 181 Re, Plasil et al. (PI 
84a) have found that, firstly, the rotating finite range model by Sierk 
(unpublished) or that by Mustafa et al. (Mu 82d), in which effects of the 
finite range of the nuclear force and of the diffuseness of the nuclear surface 
are included, adequately reproduce the experimental fission cross sections 
without any renormalization and, secondly, the new fission barriers calcu
lated by Sierk and by Mustafa et al. are valid at least in the mass region 
from 150 to 210, [see also the papers (Br 83b, PI 83)]. Delagrange et al. (De 
84a) as well as Karwowski and Vigdor (Ka 84) state, in turn, that a 
satisfactory description of experimental fissionability data for high-spin 
compound nuclei of A ::: 200 is obtained with the fission barriers from the 
rotating liquid drop model by Cohen et al. (Co 74) and no lowering of the 
barriers is required here. In these two analyses the agreement between 
statistical-model calculations and experiment without the need to modify 
the barriers is achieved owing to employment of specifically improved level 
density treatments; however, the level density philosophy of Delagrange 
et al. (De 84a) differs remarkably from that of Karwowski and Vigdor (Ka 
84). 

Recently there has been obtained a considerable body of experimental 
evidence indicative of multifold particle emission from a compound or 
mononucleus prior to the onset of fission competition [see, e.g., the papers 
(AI 82, Br 82b, Ki 82, Mi 78, Ra 82a, Ri 82a, b, Va 84, We 84b) and 
references therein]. Such effects are largely observed for very fissile, highly 
excited and/or rapidly rotating nuclear systems with a vanishing fission 
barrier, B/i) $ T(i), and the standard statistical transition-state model fails 
to describe them, just as it fails to represent fission-fragment angular 
distributions in these cases. Further development of alternative theoretical 
formulations of the fission process, in particular, exploration of the diffusion 
approach, is the subject of the recent papers (Ha 84b, Mo 82, Ni 84a, b, We 
84a, b) containing, among other items, attempts to explain and evaluate the 
effects of the delayed onset of fission competition to particle evaporation. 
Let us incidentally note that in analyzing the data which signal an unex
pectedly high yield of prefission neutrons, especially those for heaviest 
fissioning systems, one must account for neutron evaporation during the 
acceleration of fission fragments up to their asymptotic velocity (Ei 65): 
when studying fission of 251 Es formed in the reaction 232Th + 19F (E lab = 124 
MeV), Hinde et al. (Hi 84) have experimentally demonstrated that this 
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contribution can be very large-it comprises about three neutrons in this 
particular case. 

New interesting experimental information has also been gained con
cerning the fast fission process and extra-push-type effects, which are 
expected to occur in the domain of high angular momenta, excitation 
energies, and Z2j A values (Ga 84c, Gu 84, Le 84, To 84a, b, Zh 84). In 
particular, by measuring the energy dependence of symmetric fragmentation 
cross sections and of fragment mass and energy distributions for the systems 
40Ar (Elab = 210-300 MeV) on 197Ar, 209Bi, and 238U (Zh 84) as well as 35Cl 
(Elab = 240-350 MeV) on 238U (Le 84), further experimental evidence has 
been obtained in favor of a fast fission process interpreted as "fission 
without barrier". An interesting feature of the new data consists in the 
following fact: while in the systems 40Ar + 197Au and 40Ar + 209Bi the mass 
distribution variance (1; strongly increases with bombarding energy, in the 
40Ar + 238U and 35 CI + 238U systems it remains essentially constant at a very 
large value, (1;::::: 1000 (amu)2. Various qualitative explanations of this fact 
-all being consistent with the fast fission hypothesis-have been proposed 
by the authors of the experiments (Le 84, Zh 84). 

In clarifying properties of fast fission and conditions for its setting in, 
of importance is experimental information on the angular-momentum de
pendence of the mass and kinetic energy distribution variances for fission 
fragments of a genuine compound nucleus. A valuable set of such data was 
obtained by Glagola et al. (GI 84) for the fissioning systems produced in the 
fusion reactions 160 (Elab = 90-148 MeV) on 17°Yb and 32S (Elab = 180-230 
MeV) on 144,150,152,154Sm. For the compound nucleus 186pt, in the excitation 
energy range of 60-100 MeV, the measured (1; values prove to be by some 
20% larger when the compound nucleus is formed by the 32S ions which 
obviously generate higher average angular momenta I than the 160 ions do 
(for the given excitation energy range, I was estimated to be 32-54 tz in the 
32S case and 30-45 tz in the 160 case); the angular-momentum induced 
increment in the total kinetic energy variance is smaller and amounts to 
about 5-10%. 

Guarino et al. (Gu 84) have experimentally studied a mass drift 
between a heavy and a light nucleus in the reactions 238U + 48Ca, 238U + 50Ti, 
and 208Pb + 56Fe at bombarding energies of the 238U and 208Pb projectiles 
ranging between 4.6 and 6.1 MeV jnucleon. The mass drift was observed as 
a function of total kinetic energy and scattering angle of primary reaction 
products. Particularly striking has been the observation of a very large mass 
transfer towards symmetry already at lowest bombarding energies in the 
vicinity of the reaction barrier; this mass drift towards symmetry could 
favor fast fission without compound nucleus formation. 

An extended set of new experimental data on reactions between 238U 
ions of 5.4 and 6.0 MeV jnucleon and target nuclei 160, 27AI, 48Ca, 45SC, 
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48Ti, 58Fe, 64Ni, and 89y has been reported recently by Toke et al. (To 84b). 
Here accurate triple-differential cross sections, d3aldA·dE>cm·dTKE, are 
obtained for the binary events within the full range of mass A and total 
kinetic energy TKE, and within almost full range of center-of-mass angle 
ecm. Apart from the reaction on 160, all the capture product distributions 
are found to be dominated by the fast fission process. With the 27Al target 
the evolution of the reaction complex towards mass symmetry is almost 
complete whereas the heavier systems show very broad mass distributions 
with clear evidence of reseparation occurring before mass symmetry is 
reached. At the same time, the fast fission cross section diminishes as the 
target Z value increases, and for the 89y target the deep inelastic scattering 
component completely dominates. The capture cross sections for the 238U_ 
induced reactions are found to be well described by the extra-push model 
(Sw 81a, b, Sw 82, Bj 82c), however, a comparison of the present results to 
those obtained previously (Bo 82a) with a 208Pb beam and similar targets 
shows that the scaling in the entrance-channel fissility xeff is only an 
approximate law; the double magicity of 208Pb is pointed out (To 84b) as 
offering an interesting clue to understand the differences in the magnitudes 
of the extra push needed to achieve capture in the 238U and 208Pb-induced 
reactions. From the measured angular distributions the characteristic lie 
relaxation time for the mass asymmetry motion is found to be equal to 
(5.2±0.5)XlO- 21 s. As a whole, the Toke et al. (To 84b) studies provide a 
deep insight into the fast fission process thought of as the mass drift mode 
in heavy-ion reactions. Furthermore, they rise the question (To 84b) as to 
why there are two separate channels in heavy-ion reactions-deep inelastic 
collisions and fast fission, and why are the two channels so pure? An 
unambiguous answer to this question would be of fundamental importance 
to understand the essence of highly inelastic nucleus-nucleus collisions. 

The proofs for the present chapter were completed on October 15, 
1984. 
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