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The problem of reconstructing particle multiplicity distributions 
from experimental data is discussed. Because of statistical errors 
involved in the data, the problem of reconstruction is "in- 
correctly posed", which results in the oscillatory behaviour of 
the direct solution when the detection efficiency e is substantially 
lower than 100%. 

It is shown that the method of statistical regularization used 

reconstructs the real distribution and allows one to estimate 
the rms errors of the results for e~25% . The possibilities of the 
method are examined on the basis of the measurements of the 
multiplicity distribution of neutrons from spontaneous fission of 
244Cm" 

The application of the method to the determination of the 
multiplicity distributions for three Fm isotopes is presented. 

1. Introduction 

Exper iments  on de te rmin ing  the average number  o f  
part icles per  in terac t ion  and their  mul t ip l ic i ty  distri-  
but ions  are qui te  c o m m o n  in low- and high-energy 
nuclear  physics.  

Fo r  a de tec tor  efficiency lower than  100%, or  when 
an indirect  method  of  regis t ra t ion  is used, the observed 
mul t ip l ic i ty  d is t r ibut ion  is different from the real one 
and this difference should  be sui tably taken  into 
account  in an analysis  of  the data.  

The problem o f  account ing  for the efficiency of  a 
measur ing  device consists,  as a rule, in the solut ion o f  
a system of  l inear  a lgebraic  equat ions  o f  the type 

i Kji@i =fj,  j = 1,2 . . . . .  m, (1) 
i I 

where ¢Pl are the unknown componen t s  of  the part icle  
mult ipl ici ty  d is t r ibut ion ,  f j  are the exper imenta l ly  
measured  componen t s  of  the registered mult ipl ic i ty  
d is t r ibut ion,  and Kjl is the matr ix  of  the coefficients, 
conver t ing  unknown componen t s  ~0i into measured  
ones (ffl. 

Very often the errors  involved in J) cause difficulties 
in solving the system of  equat ions.  The direct  solut ion 
of  this system of  equat ions  gives reasonable  results for 
detect ion efficiencies higher than approx.  70% while 
for lower efficiencies the solut ion has usual ly an in- 
correct  and  osci l lat ing nature.  

The aim of  the present  paper  is to extract  as much 
in format ion  as possible  on the real mult ipl ic i ty  distri-  
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but ion  of  part icles f rom the exper imenta l  da t a  ob ta ined  
with a low detect ion efficiency. 

2. Fission neutron multiplicity. The direct reconstruction 
method and its incorrectness 

As an example ,  the measurement  of  the mult ipl ic i ty  
d is t r ibut ion  of  p r o m p t  fission neutrons  emit ted by the 
excited fission fragments,  is discussed. 

In these exper iments  neutrons  are counted  in coin- 
cidence with fragments.  The neutrons  modera ted  to 
thermal  velocities are registered by p ropor t iona l  
counters  or  scinti l lat ion detectors  conta in ing  mater ia ls  
with high thermal  neutron capture  cross sections 
(Cd, Gd).  The detect ion efficiency (5) o f  one neutron 
varies from 20% to 80%, depending on the type of  the 
de tec tor  used. 

I t  is reasonable  to assume that  neutrons  from a 
fission act are registered independent ly .  In this approx-  
imat ion  the detect ion p robab i l i ty  F ,  of  n neutrons  is 
ob ta ined  by summing  up the par t ia l  probabi l i t ies  of  
detect ion for the emission o f  v=n,  n+l , . . . , vm,~x  
neutrons:  

X'max 

K,,.P,.=F,, n = 0 , 1 , 2  . . . . .  rtma x (2) 
x,=n 

v! 
K , , -  5" (1-~)"  " ,  

n ! ( v -  n)! 

where Pv are the componen t s  of  the real neutron 
dis t r ibut ion  (the emission p robab i l i ty  for v neutrons),  
and  Vmax is the max imum possible  number  of  neutrons  
emit ted per  fission. 

The dis t r ibut ions  F,  and Pv are normal ized  as 
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follows: 
nmax ~'max 
Z F , = l ,  E P,.=l. 

n=0 v - 0  

The exact solution of the system (2) (which is the 
only possible one for an exactly known right-hand 
side) can be found as follows1'2): 

nmax n ! 
p a, Z ~-"(1 - - l x n - - v ~  

= _ _  - - g  ) r n ,  
.... v!(n-v)! 

v = 0 , 1 , 2  ..... v,.ax. (3) 

It is clear from physical considerations that the real 
distribution of fission neutron multiplicity, reflecting 
the excitation energy distribution of the fragments, is 
the "smooth" ,  non-negative function P, =f(v).  At the 
same time, both the multiple production process and 
detection process are essentially statistical and, conse- 
quently, the measured values of F, are burdened with 
errors. The system ofeqs. (2) can be solved by the direct 
method using formulae (3). However, owing to the 
fact that the right-hand side of eqs. (2) is known only 
approximately, we can arrive at solutions containing 
large, oscillating, and sometimes even negative com- 
ponents of P~. The strong dependence of the direct 
solution on the errors involved in F, is observed in this 
case. As a consequence, the problem of reconstruction 
of P,. using the experimental values of F, appears to be 
incorrectly posed, at least for e<  60% and not very 
large statistics. Under these conditions the "exact" 
solution is void of sense and has to be replaced by an 
approximate, "regularized" one. 

3. Method of statistical regularization 

We give a brief description of the main principles of 
the method (for convenience referred to as the 
" S T R E G "  method). More detailed information can be 
found in refs. 3 and 4 and in ref. 5. 

The method consists in introducing an a priori 
information about the unknown function. In our case 
it is an information about the smoothness and non- 
negativity of the solution. The function to be recon- 
structed is dependent on the discrete integer argument. 
The mathematical methods developed in refs. 3 and 4 
concern, strictly speaking, only the systems of alge- 
braic equations obtained as an approximation of the 
integral or differential equations. The method is, 
however, valid for our problem, as no assumptions on 
the necessity of transition to the continuous function 
were formally made. 

The assumption on the smoothness of the unknown 
function is done in the STREG method by imposing 

the probabilistic restrictions on the value of a certain 
functional computed using the values of the function at 
support points. The commonly used functional is the 
finite-difference approximation of Euclidean norm of 
the second derivative: 

-(~)(~0) = ~ [ h  2((~0i--2(/01_1-[-q ') i_2)]  2 , (4) 
;=3 

where q~ is the vector whose components ~o i are the 
values of the unknown function at consecutive support 
points, and h is a distance between neighbouring 
support points (a step). 

In our case i =  v + l ,  q)i=P,.+l, h = 1. The value of 
Vma= was taken to be equal to 8, hence n = 9. 

The approximate value of the functional f2(~0) is 
estimated in the following way. We consider in the 
space of ~o vectors the probability distribution with a 
density: 

p=(~o) = Ca exp{-½eO(q~)}, (5) 

where ~ > 0 is a parameter characterizing the smooth- 
ness of the unknown function, C= is the normalizing 
coefficient dependent on ~. 

It can be shown that the average value of the func- 
tional O(~o) over this distribution is n/~. The functions 

for which f2(q~) is noticeably greater than n/~ are 
suppressed by the exponent in p= (q~). If  the approximate 
value of the functional f2(q~) is known for the sought 
function ~o, we can estimate :~ and take p~(~o) as an a 
priori density of the probability for q~. Using the appa- 
ratus of mathematical statistics known as the Bayesian 
strategy, we can obtain a "regularized" solution and 
its rms errors. This is one of the versions of the STREG 
method. It requires an a priori information on para- 
meter ~, i.e., an a priori estimate of the value of the 
f2(q~) functional. If this information is not available, 
a more complicated variant of the method is used. In 
this case the a priori information about q~ is given in 
the form of a "'laminar ensemble" (for more detailed 
explanation see ref. 5): 

p(q~) = const j'p~(q~)d~. (6) 

The "layers" are the ensembles of smooth functions 
with different fixed values of c~, and the solution is 
obtained as their superposition. Ill other words, all the 
a priori values of ~ have equal probabilities. The 
solution in this ensemble reduces, in fact, to an a 
posteriori estimate of ~ from the experimental data, 
i.e. from eqs. (2). In the present paper the two above- 
mentioned variants of the method were combined. 
When the experiment was sufficiently informative, the 
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parameter ~ was estimated a posteriori. The value of 
found in this way was subsequently used as an a 

priori one for less informative experiments. 
Errors in the values of F,, were considered to be 

independent and normally distributed. In reality, 
however, the main error component which is a statis- 
tical one, has the Poisson distribution. For the com- 
ponents F, computed on the basis of  only a few and 
zero counts it would be more desirable to use this 
distribution, but this is unlikely to affect our results 
seriously. 

For the reconstructions using the STREG method, 
the Algol and Fortran versions of programs have been 
used. The detailed description of the formulae of the 
method and the Algol version of the program are 
published elsewhere6). The calculations were made 
using a BESM-6 computer. 

4. Some examples of regularized solutions 

To illustrate the different aspects of the STREG 
method, the data on the multiplicity distribution of 
spontaneous fission neutrons of 2 4 4 C m  w e r e  analysed. 
These data were obtained using devices 7"8) with different 
efficiencies. The distributions reconstructed by the 
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Fig. 1. Multiplicity dis tr ibut ions obtained in exper iments  at 
e = 7 5 . 6 %  (fig. la) and e = 4 8 . 3 %  (fig. lb). The dotted line is 
experimental  values o f  F;;, the dot-dash line is the result of  
reconstruct ion using direct formulae  (P~), and  the solid line the 

result of  regularized reconstruct ion (pr). 

STREG method were discussed and compared with the 
results of  the direct solution of eqs. (2) P~. 

The experimental values of  F, in fig. la are taken 
from ref. 7. The neutron detection efficiency here is 
rather high (75.6%) and the total number of detected 
fission events is M = 16200. Under these conditions 
the error in the direct solution P~ is reasonably small 
and, therefore, it is acceptable. The regularized 
solution PS coincides with high accuracy with the 
direct one. The errors involved in the regularized 
solutions are equal to those of the non-regularized 
ones. 

Fig. lb shows the data obtained using the apparatus 
described in refl 8. The registration efficiency was 
g = 4 8 . 3 % ,  the number of fissions analysed being 
M = 7169. In this case the direct solution P~ is unaccep- 
table. The regularized solution pr agrees with the curve 
P~ in fig. la with an accuracy better than the error of  
reconstruction. 

To estimate the extremal possibilities of  reconstruc- 
tion using the STREG method, the following exper- 
iment was made. From the real experimental data 
obtained 8) a small part ( M = 4 0 3 9  events taking 
account of  pulses from only half of the neutron detec- 
tors) was used. This corresponds to a total efficiency of 
23.7%. The resulting curves are shown in fig. 2. The 
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Fig. 2. Multiplicity distr ibut ions obtained in the exper iment  at 
e = 23.7% (the same nota t ion as in fig. 1). 
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TABLE l 

Comparison of experimental and computed distributions for 
=48.3%; comparison of regularized solutions for e =48.3% 

and e = 75.6~/o. 

, , v  Fn F~°mD, Pr(e=48"3%) Pr( e=  75"6%) 

TABLE 2 

The multiplicity distributions of fission neutrons for Fm isotopes, 
reconstructed using the STREG method. 

Isotope 254Fm 256Fm 257Fm 
Reference 9 10 11 

0 0.22964-0.0063 0.2298 0.0304-0.011 0.0074-0.003 
1 0.37894-0.0087 0.3836 0.1264-0.023 0.1264-0.007 
2 0.27774-0.0071 0.2682 0.2884-0.025 0.3064-0.011 
3 0.09174-0.0040 0.0974 0.3044-0.025 0.342±0.011 
4 0.02044-0.0018 0.0193 0.187+0.023 0.1734-0.008 
5 0.00174-0.0005 0.0017 0.0654-0.018 0.0404-0.004 
6 0.0000 4- 0.0001 0.0000 0.000 4- 0.017 0.006 ± 0.002 

d i rec t  so lu t ion  P~ gives an  absu rd  result .  T h e  regular -  

ized so lu t ion  P~ has  no t i c eab ly  l a rger  e r ro rs  t han  in 

the  p r ev ious  case  (fig. lb) ,  bu t  wi th in  the  e r ro r  l imi t s  it 

agrees  aga in  wi th  the  resul ts  o f  m o r e  precise  exper -  

iments .  
T h e  r egu la r i zed  so lu t i on  is n o t  the  exac t  so lu t ion  o f  

eqs. (2) i f  the  real  va lues  o f  F ,  a re  subs t i tu ted  by 

0,5 

QZ 

Od 

0.0 

O5 

02 

O 

00 

Q2 

03 

0.0 

03 

02. 

0.4 

q 0,0 

.-~¢ 

,, , : • 

/ 

V [10 

',~/ -05 

4.0 
' ~ 05 

O0 
-05 

"J V V 
Fig. 3. Distribution of fission neutron multiplicities for Fm 
isotopes: fig. 3 a - -  254Fm, M =  870, e = 61.1%; fig. 3b - ")56Fm. 
M=204 .  e=48 .3%;  fig. 3 c -  957Fm, M =  1499, e=51 .0% 

(the same notation as in fig. 1). 

M 870 204 1499 
e 61.1% 48.3% 51.0% 
i; 3.984-0.19 a 3.73±0.18 4.01 +0.13 a 

2 cry 1.49 4- 0.20 2.30 ± 0.65 2.92 ̀0 + 1.27 
- -  1 . 6 8  

P0 0.003+0.012 0.000-4-0.036 0.0594-0.015 
pa 0.020 4- 0.027 0.080 -4- 0.043 0.042 q- 0.029 
P2 0.095±0.030 0.157±0.048 0.077±0.030 
Pa 0.246±0.034 0.217±0.048 0.1634-0.035 
P4 0.3174-0.035 0.2394-0.048 0.2324-0.036 
Ps 0.223 4-0.033 0.201 4-0.045 0.221 +0.036 
P6 0.0764-0.029 0.1024-0.040 0.1464-0.033 
P7 0.0124-0.026 0.0044-0.031 0.0604-0.033 
P8 0.0084-0.013 0.000±0.013 0.0004-0.021 

a Renormalized using the value of~(25~Cf) = 3.756. 
b Value from ref. 11. 

All the other values in table 2 were calculated using experi- 
mental data from refs. 9-11. 

expe r imen t a l  ones.  I t  is in te res t ing  to ver i fy  wi th  w h a t  

accu racy  this so lu t ion  satisfies eqs. (2). 

In  table  1 the  expe r imen t a l  va lues  o f  F ,  (and the i r  

rms  e r ro rs  S,)  for  g = 48 .3% are  listed. In the  second  
c o l u m n  the  va lues  o f  F c°mp are  listed, o b t a i n e d  us ing 

regu la r ized  P~ in the  l e f t -hand  side o f  eqs. (2). N o t e  tha t  
the  di f ference IFn-Fc°nmP ] is m u c h  smal le r  t h a n  S,.  

T h e  nex t  two  c o l u m n s  c o m p a r e  the  r egu la r i zed  solu-  
t ions  for  e = 48 .3% and  e = 75 .6%.  

T h e  p r o m p t  n e u t r o n s  f r o m  the  s p o n t a n e o u s  fission 
o f  F m  i so topes  were  inves t iga ted  by d i f ferent  au-  
thorsg- l~) .  H o w e v e r ,  on ly  the expe r imen t a l  distr i-  

bu t i ons  o f  F ,  and the  in tegra l  charac te r i s t ics  ? and  a 2 

o f  real d i s t r ibu t ions  were  q u o t e d  in these papers .  T h e  
t rue  d i s t r ibu t ions  cou ld  no t  be  o b t a i n e d  because  o f  the  

incor rec tness  o f  the  p r o b l e m  in the  case o f  48 + 6 1 %  

efficiencies ach ieved  in refs. 9-11.  These  d i s t r ibu t ions  

r e c o n s t r u c t e d  us ing  the  S T R E G  m e t h o d  are  s h o w n  in 
fig. 3 and  in tab le  2. 

T h e  va lue  o f  ~ = 3.756 for  251Cf was  used as a 

s t a n d a r d  and  the  eff iciency o f  the  de tec to rs  f r o m  refs. 9 
and  1l were  acco rd ing ly  r e n o r m a l i z e d .  D a t a  f r o m  
refs. 9 and  11 were  co r r ec t ed  on ly  for  a b a c k g r o u n d ,  

and  for  d a t a  f r o m  ref. 10 co r r ec t ions  for  the  de tec to r  
r e so lv ing  t ime  were  also i n t roduced .  

5. The effect of  errors involved in F. and 

T h e  r educ t ion  o f  rms  e r ro rs  S .  in the  expe r imen ta l  
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values of  F, leads to a decrease in the error o f  the 
reconstructed function P~. However,  this error does 
not  decrease proport ional ly to S,, as in the case o f  the 
direct solution P~, but considerably more slowly. For  
example, in one o f  the experiments with e = 48.3%, 
a 9-fold increase in statistics (from M = 7 1 6 9  to 
M = 6 5 0 1 5 ) ,  with the consequent lowering of  the 
errors S, by three times, the error o f  P~ decreased only 
by about  30%. This effect is due to the fact that  the 
significant contr ibution to the estimated error o f  recon- 
struction is made by the higher expansion components  
in the system of  or thogonal  functions, which are inde- 
finite for both M = 7 1 6 9  and M =  65 015. Therefore, 
for a given value o f  e (which determines the spectral 
properties o f  the kernel of  eqs. (2)), even a large 
increase in experimental accuracy does not increase the 
accuracy of  pr  above a certain limit. At  the same time, 
as it may be seen from the above figures, quite modest  
statistics is sufficient to obtain a reasonable though  not  
highly accurate solution P~. These considerations could 
be useful in planning experiments. 

The regularized solution is less sensitive to the error 
of  the kernel of  equations (i.e., to the error  in e) than 
the direct one. This error is taken into account  by the 
reconstruction o f  distributions for two values of  E 
(mean e+_rms error o f  e). In the experiment, the result 
o f  which is shown in fig. lb, an error  in ~ was about  
1%. The fluctuations o f  solutions for such a variation 
in e are comparable  with the line width. The variation 
in the non-regularized solution is many times larger. 

6. The integral characteristics of  multiplicity 
distributions 

Two important  integral characteristics of  the distri- 
bution, namely the average number  o f  emitted neutrons 

~'max Vmax 
F ~ vP,. and its variance 2 = a v =  ~ (v--~)2p, ,can 

~,'=0 ; ,=0  

be determined directly f rom the experimental data: 

1 ..... ~ 2 ( n 2 ) -  Jl2- n(l - e )  (7) 
f = -g.=o ~ nF,, = --,g O "  v : g2 

Evidently, f and cr 2, computed  using direct solution 
P~, agree with these values. These parameters obtained 
by the S T R E G  method (let us call them ~r and cr2r) are, 

2 How large generally speaking, different from ~ and cr v. 
can these differences be ? 

- 2 or2 r are listed for six In table 3 the values o f  f, v,, cry, 
measured sets o f  F,, all for 244Cm. The first four are 
the results of  real experiments, the last two are obtained 
by dividing the results of  a real experiment into two 

2 parts, as mentioned above. The values o f  ~ and a~ are 

TABLE 3 

Regularized and directly obtained parameters of distributions 
for different experiments (2a4Cm). 

No e(%) M v vr ~r 2 0"2 

1 48.3 7169  2.6904-0.036 2.687 1.388±0.076 1.410 
2 58.2 65015 2.6904-0.015 2.691 1.290+0.025 1.296 
3 44.4 6928 2.6904-0.038 2.688 1.212±0.084 1.226 
4 39.9 20359 2.690±0.025 2.688 1.1734-0.057 1.187 
5 23.7 4039  2.690±0.071 2 ,684 1.230±0.272 1.287 
6 22.0 4039  2.6904-0.075 2.684 1.587±0.311 1.661 

given with their errors. The value o f  ~ = 2.690 for 
244Cm is used as a standard, so the errors of  ~ reflect 
only the accuracy of  determining e. 

F rom table 3 it may be seen that the differences 
[~--~r] are much smaller than the errors in ~. The 
differences (azr - a~ 2) are positive. This may be explained 
by the cut-off o f  the higher harmonics  o f  the sought 
function, which generally leads to a small broadening 
of  the distribution. However,  as for i ~, all differences 
(a~r_ ~2) account  for only a small part  o f  the errors in 

z It should be noted that these errors are quite large, O'v. 

which is confirmed by the large scatter o f  values o f  ~2 
for the different sets. 

7. Summation of data from different experiments 

Let us consider some independent experiments 
carried out  to determine one particular multiplicity 
distribution. Dur ing reconstruction o f  the unknown 
function from some sets of  data  using the S T R E G  
method,  the usual weighted averaging procedure 
assuming the statistical independence o f  errors cannot  
be followed. This is due to the fact that  during recon- 
struction o f  different versions the same a priori infor- 
mation is used. The theoretical error involved in the 
regularized solution is mainly an estimate of  the 
possible influence o f  these higher harmonics  of  an 
unknown function, which in the experiment remain 
quite indefinite. The other component  o f  the error 
originates f rom the harmonics which are, more  or less 
successfully, determined from experiment. Only the 
latter component  decreases with increasing number  of  
similar experiments (i.e., with a similar value o f  ~), 
while the former one does not  vary. Therefore, as the 
number  of  experiments increases, or the experimental 
error decreases, the error in the regularized solution 
decreases at a slower rate than in the case of  correctly 
posed equations (and their solutions). 

The question arises as to how to combine the results 
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Fig. 4. Combined result of multiplicity reconstruction on the 
basis of three experiments: crosses correspond to partial results, 

points are a comined result. 

of different experiments,  obtained using the S T R E G  
method,  and how to combine  the regularized results 
with the non-regularized ones? This can obviously be 
done by taking into account  as independent ,  only the 
really independent  data, i.e., the measured values of 
F,. Then,  the number  of equat ions in (2) should be 
increased propor t ional ly  to the number  of experiments, 
preserving the number  of u n k n o w n  quanti t ies  P,. 
which describe the same u n k n o w n  function.  A similar 
procedure is used in combin ing  the regularized results 
with those of correctly posed equations.  The only 
difference lies in the fact that the funct ion p d is used as 
input  data for the correctly posed problem with a 
kernel in the form of an identity matrix. Fig. 4 shows 
the summarized result of three experiments with com- 
parable informativi ty (versions 1, 3 and 4 in table 3). 
The error in the result is about  20% less than those in 
the components .  Note that  the combined " 'curve" is 
somewhat  narrower than the partial ones, as with 
increasing informativity the broadening of the distri- 
but ion,  ment ioned in the preceding section, decreases. 

8. Conclusion 

For  the measurements  of multiplicity distr ibutions 
with detection efficiencies substantially lower than 
unity, the direct solutions of eqs. (2) connect ing the real 
dis t r ibut ion P,, with the measured one F,, appear to be 
unreasonable  because of the incorrectness of equations. 
In these cases, where owing to a high efficiency and 
small experimental error, the direct method of solution 
is acceptable, the S T R E G  method gives identical 
results and errors. Thus we can conclude that the 
S T R E G  method is more general and allows one to 
find P,, with reasonable errors for an efficiency of 
e >  25%. 

The authors are thankful  to Dr  Yu. A. Muzychka 
and Dr  G. A. Ososkov for s t imulat ing discussions. 
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